14 research outputs found

    The trans-ancestral genomic architecture of glycemic traits

    Get PDF
    Glycemic traits are used to diagnose and monitor type 2 diabetes and cardiometabolic health. To date, most genetic studies of glycemic traits have focused on individuals of European ancestry. Here we aggregated genome-wide association studies comprising up to 281,416 individuals without diabetes (30% non-European ancestry) for whom fasting glucose, 2-h glucose after an oral glucose challenge, glycated hemoglobin and fasting insulin data were available. Trans-ancestry and single-ancestry meta-analyses identified 242 loci (99 novel; P < 5 x 10(-8)), 80% of which had no significant evidence of between-ancestry heterogeneity. Analyses restricted to individuals of European ancestry with equivalent sample size would have led to 24 fewer new loci. Compared with single-ancestry analyses, equivalent-sized trans-ancestry fine-mapping reduced the number of estimated variants in 99% credible sets by a median of 37.5%. Genomic-feature, gene-expression and gene-set analyses revealed distinct biological signatures for each trait, highlighting different underlying biological pathways. Our results increase our understanding of diabetes pathophysiology by using trans-ancestry studies for improved power and resolution. A trans-ancestry meta-analysis of GWAS of glycemic traits in up to 281,416 individuals identifies 99 novel loci, of which one quarter was found due to the multi-ancestry approach, which also improves fine-mapping of credible variant sets

    Detectable clonal mosaicism and its relationship to aging and cancer

    Get PDF
    In an analysis of 31,717 cancer cases and 26,136 cancer-free controls from 13 genome-wide association studies, we observed large chromosomal abnormalities in a subset of clones in DNA obtained from blood or buccal samples. We observed mosaic abnormalities, either aneuploidy or copy-neutral loss of heterozygosity, of >2 Mb in size in autosomes of 517 individuals (0.89%), with abnormal cell proportions of between 7% and 95%. In cancer-free individuals, frequency increased with age, from 0.23% under 50 years to 1.91% between 75 and 79 years (P = 4.8 × 10(-8)). Mosaic abnormalities were more frequent in individuals with solid tumors (0.97% versus 0.74% in cancer-free individuals; odds ratio (OR) = 1.25; P = 0.016), with stronger association with cases who had DNA collected before diagnosis or treatment (OR = 1.45; P = 0.0005). Detectable mosaicism was also more common in individuals for whom DNA was collected at least 1 year before diagnosis with leukemia compared to cancer-free individuals (OR = 35.4; P = 3.8 × 10(-11)). These findings underscore the time-dependent nature of somatic events in the etiology of cancer and potentially other late-onset diseases

    Extension of SKAT to multi-category phenotypes through a geometrical interpretation

    No full text
    International audienceRare genetic variants are expected to play an important role in disease and several statistical methods have been developed to test for disease association with rare variants, including variance-component tests. These tests however deal only with binary or continuous phenotypes and it is not possible to take advantage of a suspected heterogeneity between subgroups of patients. To address this issue, we extended the popular rare-variant association test SKAT to compare more than two groups of individuals. Simulations under different scenarios were performed that showed gain in power in presence of genetic heterogeneity and minor lack of power in absence of heterogeneity. An application on whole-exome sequencing data from patients with early- or late-onset moyamoya disease also illustrated the advantage of our SKAT extension. Genetic simulations and SKAT extension are implemented in the R package Ravages available on GitHub ( https://github.com/genostats/Ravages )

    Testing for association with rare variants in the coding and non-coding genome: RAVA-FIRST, a new approach based on CADD deleteriousness score

    Get PDF
    International audienceRare variant association tests (RVAT) have been developed to study the contribution of rare variants widely accessible through high-throughput sequencing technologies. RVAT require to aggregate rare variants in testing units and to filter variants to retain only the most likely causal ones. In the exome, genes are natural testing units and variants are usually filtered based on their functional consequences. However, when dealing with whole-genome sequence (WGS) data, both steps are challenging. No natural biological unit is available for aggregating rare variants. Sliding windows procedures have been proposed to circumvent this difficulty, however they are blind to biological information and result in a large number of tests. We propose a new strategy to perform RVAT on WGS data: "RAVA-FIRST" (RAre Variant Association using Functionally-InfoRmed STeps) comprising three steps. (1) New testing units are defined genome-wide based on functionally-adjusted Combined Annotation Dependent Depletion (CADD) scores of variants observed in the gnomAD populations, which are referred to as "CADD regions". (2) A region-dependent filtering of rare variants is applied in each CADD region. (3) A functionally-informed burden test is performed with sub-scores computed for each genomic category within each CADD region. Both on simulations and real data, RAVA-FIRST was found to outperform other WGS-based RVAT. Applied to a WGS dataset of venous thromboembolism patients, we identified an intergenic region on chromosome 18 enriched for rare variants in early-onset patients. This region that was missed by standard sliding windows procedures is included in a TAD region that contains a strong candidate gene. RAVA-FIRST enables new investigations of rare non-coding variants in complex diseases, facilitated by its implementation in the R package Ravages

    Euroopan patenttivirasto torjui ihmisalkioiden käyttöön perustuvat patentit : laajennetun valituslautakunnan ratkaisu asiassa G 02/06

    No full text
    To build a predictive model for urothelial carcinoma of the bladder (UCB) risk combining both genomic and nongenomic data, 1,127 cases and 1,090 controls from the Spanish Bladder Cancer/EPICURO study were genotyped using the HumanHap 1M SNP array. After quality control filters, genotypes from 475,290 variants were available. Nongenomic information comprised age, gender, region, and smoking status. Three Bayesian threshold models were implemented including: (1) only genomic information, (2) only nongenomic data, and (3) both sources of information. The three models were applied to the whole population, to only nonsmokers, to male smokers, and to extreme phenotypes to potentiate the UCB genetic component. The area under the ROC curve allowed evaluating the predictive ability of each model in a 10-fold cross-validation scenario. Smoking status showed the highest predictive ability of UCB risk (AUCtest = 0.62). On the other hand, the AUC of all genetic variants was poorer (0.53). When the extreme phenotype approach was applied, the predictive ability of the genomic model improved 15%. This study represents a first attempt to build a predictive model for UCB risk combining both genomic and nongenomic data and applying state-of-the-art statistical approaches. However, the lack of genetic relatedness among individuals, the complexity of UCB etiology, as well as a relatively small statistical power, may explain the low predictive ability for UCB risk. The study confirms the difficulty of predicting complex diseases using genetic data, and suggests the limited translational potential of findings from this type of data into public health interventions. © 2014 WILEY PERIODICALS, INC.The work was partially supported by the Fondo de Investigacion Sanitaria, Instituto de Salud Carlos III (G03/174, 00/0745, PI051436, PI061614, PI09-02102, G03/174, and Sara Borrell fellowship to E. L. M.), Spain; Fundacio la Marato de TV3 (#050830); Red Tematica de Investigacion Cooperativa en Cancer (RTICC, (RTICC, #C03/009, #RD06/0020, and #RD12/0036/0050), Instituto de Salud Carlos III (ISCIII), Spanish Ministry of Economy and Competitiveness & European Regional Development Fund (ERDF) "Una manera de hacer Europa"); Asociacion Espanola Contra el Cancer (AECC); EU-FP7-201663-UROMOL; and NIH-RO1-CA089715 and CA34627; and by the Intramural Research Program of the Division of Cancer Epidemiology and Genetics, National Cancer Institute, USA

    End-Truncated LAMB1 Causes a Hippocampal Memory Defect and a Leukoencephalopathy.

    No full text
    International audienceObjectiveThe majority of patients with a familial cerebral small vessel disease (CSVD) referred for molecular screening do not show pathogenic variants in known genes. In this study, we aimed to identify novel CSVD causal genes.MethodsWe performed a gene-based collapsing test of rare protein-truncating variants identified in exome data of 258 unrelated CSVD patients of an ethnically matched control cohort and of 2 publicly available large-scale databases, gnomAD and TOPMed. Western blotting was used to investigate the functional consequences of variants. Clinical and magnetic resonance imaging features of mutated patients were characterized.ResultsWe showed that LAMB1 truncating variants escaping nonsense-mediated messenger RNA decay are strongly overrepresented in CSVD patients, reaching genome-wide significance (p < 5 × 10−8). Using 2 antibodies recognizing the N- and C-terminal parts of LAMB1, we showed that truncated forms of LAMB1 are expressed in the endogenous fibroblasts of patients and trapped in the cytosol. These variants are associated with a novel phenotype characterized by the association of a hippocampal type episodic memory defect and a diffuse vascular leukoencephalopathy.InterpretationThese findings are important for diagnosis and clinical care, to avoid unnecessary and sometimes invasive investigations, and also from a mechanistic point of view to understand the role of extracellular matrix proteins in neuronal homeostasis

    Mosaic loss of chromosome Y is associated with common variation near TCL1A

    No full text
    Mosaic loss of chromosome Y (mLOY) leading to gonosomal XY/XO commonly occurs during aging, particularly in smokers. We investigated whether mLOY was associated with non-hematological cancer in three prospective cohorts (8,679 cancer cases and 5,110 cancer-free controls) and genetic susceptibility to mLOY. Overall, mLOY was observed in 7% of men, and its prevalence increased with age (per-year odds ratio (OR) = 1.13, 95% confidence interval (CI) = 1.12-1.15; P < 2 × 10(-16)), reaching 18.7% among men over 80 years old. mLOY was associated with current smoking (OR = 2.35, 95% CI = 1.82-3.03; P = 5.55 × 10(-11)), but the association weakened with years after cessation. mLOY was not consistently associated with overall or specific cancer risk (for example, bladder, lung or prostate cancer) nor with cancer survival after diagnosis (multivariate-adjusted hazard ratio = 0.87, 95% CI = 0.73-1.04; P = 0.12). In a genome-wide association study, we observed the first example of a common susceptibility locus for genetic mosaicism, specifically mLOY, which maps to TCL1A at 14q32.13, marked by rs2887399 (OR = 1.55, 95% CI = 1.36-1.78; P = 1.37 × 10(-10)).This project has been funded in whole or in part with federal funds from the National Cancer Institute, US National Institutes of Health, under contract HHSN261200800001E. The content of this publication does not necessarily reflect the views or policies of the US Department of Health and Human Services nor does mention of trade names, commercial products or organizations imply endorsement by the US government

    Detectable clonal mosaicism and its relationship to aging and cancer

    Get PDF
    10.1038/ng.2270Nature Genetics446651-658NGEN

    Detectable clonal mosaicism and its relationship to aging and cancer

    No full text
    In an analysis of 31,717 cancer cases and 26,136 cancer-free controls from 13 genome-wide association studies, we observed large chromosomal abnormalities in a subset of clones in DNA obtained from blood or buccal samples. We observed mosaic abnormalities, either aneuploidy or copy-neutral loss of heterozygosity, of &gt; 2 Mb in size in autosomes of 517 individuals (0.89%), with abnormal cell proportions of between 7% and 95%. In cancer-free individuals, frequency increased with age, from 0.23% under 50 years to 1.91% between 75 and 79 years (P = 4.8 x 10(-8)). Mosaic abnormalities were more frequent in individuals with solid tumors (0.97% versus 0.74% in cancer-free individuals; odds ratio (OR) = 1.25; P = 0.016), with stronger association with cases who had DNA collected before diagnosis or treatment (OR = 1.45; P = 0.0005). Detectable mosaicism was also more common in individuals for whom DNA was collected at least 1 year before diagnosis with leukemia compared to cancer-free individuals (OR = 35.4; P = 3.8 x 10(-11)). These findings underscore the time-dependent nature of somatic events in the etiology of cancer and potentially other late-onset diseases
    corecore